LeetCode 솔루션					분류
				
						[12/22] 834. Sum of Distances in Tree
본문
There is an undirected connected tree with n nodes labeled from 0 to n - 1 and n - 1 edges.
You are given the integer n and the array edges where edges[i] = [ai, bi] indicates that there is an edge between nodes ai and bi in the tree.
Return an array answer of length n where answer[i] is the sum of the distances between the ith node in the tree and all other nodes.
Example 1:

Input: n = 6, edges = [[0,1],[0,2],[2,3],[2,4],[2,5]] Output: [8,12,6,10,10,10] Explanation: The tree is shown above. We can see that dist(0,1) + dist(0,2) + dist(0,3) + dist(0,4) + dist(0,5) equals 1 + 1 + 2 + 2 + 2 = 8. Hence, answer[0] = 8, and so on.
Example 2:

Input: n = 1, edges = [] Output: [0]
Example 3:

Input: n = 2, edges = [[1,0]] Output: [1,1]
Constraints:
- 1 <= n <= 3 * 104
- edges.length == n - 1
- edges[i].length == 2
- 0 <= ai, bi < n
- ai != bi
- The given input represents a valid tree.
Accepted
75.9K
Submissions
128.2K
Acceptance Rate
59.2%
관련자료
- 
			링크
			댓글 1
					
			학부유학생님의 댓글
- 익명
- 작성일
from collections import defaultdict
class Solution:
    def sumOfDistancesInTree(self, n: int, edges: List[List[int]]) -> List[int]:
        graph = defaultdict(list)
        for n1, n2 in edges:
            graph[n1].append(n2)
            graph[n2].append(n1)
        N = n
        res = [0]*N
        count = [1]*N
        
        def dfs(subroot, prev):
            for child in graph[subroot]:
                if child == prev: continue
                dfs(child, subroot)
                count[subroot] += count[child]
                res[subroot] += res[child] + count[child]
        
        def dfs2(subroot, prev):
            for child in graph[subroot]:
                if child == prev: continue
                res[child] = res[subroot] - count[child] + N - count[child]
                dfs2(child, subroot)
        
        dfs(0, -1)
        dfs2(0, -1)
        return res
 
								 
							








